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Part I

Introduction to causal inference
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Correlation does not imply causation

� Motivation� Why You Might Care �

illustrative example that will help clarify how spurious correlations can
arise.

�.�.� Why is Association Not Causation?

Before moving to the next example, let’s be a bit more precise about
terminology. “Correlation” is often colloquially used as a synonym
for statistical dependence. However, “correlation” is technically only a
measure of linear statistical dependence. We will largely be using the
term association to refer to statistical dependence from now on.

Causation is not all or none. For any given amount of association, it
does not need to be “all of the association is causal” or “none of the
association is causal.” Rather, it is possible to have a large amount of
association with only some of it being causal. The phrase “association
is not causation” simply means that the amount of association and the
amount of causation can be different. Some amount of association and
zero causation is a special case of “association is not causation.”

Say you happen upon some data that relates wearing shoes to bed and
waking up with a headache, as one does. It turns out that most times
that someone wears shoes to bed, that person wakes up with a headache.
And most times someone doesn’t wear shoes to bed, that person doesn’t
wake up with a headache. It is not uncommon for people to interpret
data like this (with associations) as meaning that wearing shoes to bed
causes people to wake up with headaches, especially if they are looking
for a reason to justify not wearing shoes to bed. A careful journalist might
make claims like “wearing shoes to bed is associated with headaches”
or “people who wear shoes to bed are at higher risk of waking up with
headaches.” However, the main reason to make claims like that is that
most people will internalize claims like that as “if I wear shoes to bed,
I’ll probably wake up with a headache.”

We can explain how wearing shoes to bed and headaches are associated
without either being a cause of the other. It turns out that they are
both caused by a common cause: drinking the night before. We depict
this in Figure �.�. You might also hear this kind of variable referred
to as a “confounder” or a “lurking variable.” We will call this kind of
association confounding association since the association is facilitated by a
confounder.

Figure �.�: Causal structure, where drink-
ing the night before is a common cause of
sleeping with shoes on and of waking up
with a headaches.

The total association observed can be made up of both confounding
association and causal association. It could be the case that wearing shoes
to bed does have some small causal effect on waking up with a headache.
Then, the total association would not be solely confounding association
nor solely causal association. It would be a mixture of both. For example,
in Figure �.�, causal association flows along the arrow from shoe-sleeping
to waking up with a headache. And confounding association flows along
the path from shoe-sleeping to drinking to headachening (waking up
with a headache). We will make the graphical interpretation of these
different kinds of association clear in Chapter �.

Credit: Brady Neal
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What is causal inference?

In short: using data to estimate the effect of actions

▶ Effect of a treatment on a disease

▶ Effect of interest rates on inflation

▶ Effect of acting according to some policy (e.g., public policy, RL)

More accurately

Causal inference is a field of study that explores how:

1 Data

2 Assumptions about this data

can be combined to answer certain types of questions (and which cannot be answered).
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Different types of questions

Credit: Alycia N. Carey and Xintao Wu

Some questions are harder to answer than others

⋆

⋆
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Different types of questions

Credit: Alycia N. Carey and Xintao Wu

Today, we will focus on estimating the effect of interventions.

⋆

⋆
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Interventional quantities for decision-making

Average treatment effect: E[Y | do(A = a)]− E[Y | do(A = a′)]

▶ Effect of wearing masks on COVID-19 contaminations

▶ Effect of a new user interface on customer satisfaction

Conditional average treatment effect: E[Y | X , do(A = a)]− E[Y | X , do(A = a′)]

▶ Effect on sales ($) of sending e-mail discounts to customers that are older than 30 yo.

▶ Effect on survival of a treatment for individuals with a particular genotype.

▶ Contextual bandits

Individualized treatment effect: pushing the specificity of X to the limit.

▶ Personalized medicine
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Why should you care about causality?
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A] E[Y | A, Z = mild] E[Y | A, Z = severe]

Yes (A = 1) 78% (273/250) 93% (81/87) 73% (192/263)

No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Example adapted from Julious & Mullee [1994]
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Treatment E[Y | A] E[Y | A, Z = mild] E[Y | A, Z = severe]

Yes (A = 1) 78% (273/250) 93% (81/87) 73% (192/263)

No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Example adapted from Julious & Mullee [1994]

Overall: The treatment seems detrimental.

E[Y | A = 1]− E[Y | A = 0] = −5%
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Mild illness: the treatment is beneficial.

E[Y | A = 1,Z = mild]− E[Y | A = 0,Z = mild] = 6%
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A] E[Y | A, Z = mild] E[Y | A, Z = severe]

Yes (A = 1) 78% (273/250) 93% (81/87) 73% (192/263)

No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Example adapted from Julious & Mullee [1994]

Severe illness: the treatment is beneficial.

E[Y | A = 1,Z = severe]− E[Y | A = 0,Z = severe] = 4%
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Doctors act according to a policy

Z = mild

You’ll be fine, A = 0.

Alexandre Drouin Introduction to causal inference July 11, 2022 10 / 38



Doctors act according to a policy

Z = mild

You’ll be fine, A = 0.

Alexandre Drouin Introduction to causal inference July 11, 2022 10 / 38



Doctors act according to a policy

Z = mild

You’ll be fine, A = 0.

Alexandre Drouin Introduction to causal inference July 11, 2022 10 / 38



Doctors act according to a policy

Z = severe

You need treatment, A = 1!
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The A → Y relationship is confounded

Treatment: A ∈ {0, 1}

Recovery: Y ∈ {0, 1}

Severity: Z ∈ {mild, severe}

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

Treatment E[Y | A] E[Y | A, Z = mild] E[Y | A, Z = severe]

Yes (A = 1) 78% (273/250) 93% (81/87) 73% (192/263)

No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Confounding: patients with a severe illness are more likely to receive treatment and
also more likely to have a bad outcome.
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Illustration of the difference between conditioning and intervening � Causal Models ��

Population Conditioning InterveningSubpopulations

oror

) = 1) = 1) = 0

) = 0

do() = 1)

do() = 0)

Figure �.�: Illustration of the difference between conditioning and intervening

We will often work with full distributions like %(. | do(C)), rather than
their means, as this is more general; if we characterize %(. | do(C)), then
we’ve characterized E[. | do(C)]. We will commonly refer to %(. | do() =
C)) and other expressions with the do-operator in them as interventional
distributions.

Interventional distributions such as %(. | do() = C)) are conceptually
quite different from the observational distribution %(.). Observational
distributions such as %(.) or %(., ), -) do not have the do-operator in
them. Because they don’t have the do-operator, we can observe data from
them without needing to carry out any experiment. This is why we call
data from %(., ), -) observational data. If we can reduce an expression
& with do in it (an interventional expression) to one without do in it (an
observational expression), then & is said to be identifiable. An expression
with a do in it is fundamentally different from an expression without a
do in it, despite the fact that in do-notation, do appears after a regular
conditioning bar. As we discussed in Section �.�, we will refer to an
estimand as a causal estimand when it contains a do-operator, and we
refer to an estimand as a statistical estimand when it doesn’t contain a
do-operator.

Whenever, do(C) appears after the conditioning bar, it means that ev-
erything in that expression is in the post-intervention world where the
intervention do(C) occurs. For example, E[. | do(C), / = I] refers to the
expected outcome in the subpopulation where / = I after the whole
subpopulation has taken treatment C. In contrast, E[. | / = I] simply
refers to the expected value in the (pre-intervention) population where
individuals take whatever treatment they would normally take ()). This
distinction will become important when we get to counterfactuals in
Chapter ��.

Credit: Brady Neal

Alexandre Drouin Introduction to causal inference July 11, 2022 13 / 38

https://www.bradyneal.com/causal-inference-course


Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

What is the expected number of issues solved per hour if we have 100 employees working?

How many issues can we expect to solve if I make 100 employees work today?

Given that we solved 1000 issues and had 100 employees working today, how many could we have solved
with a team twice as big?
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Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

What is the expected number of issues solved per hour if we have 100 employees working? associative

How many issues can we expect to solve if I make 100 employees work today? interventional

Given that we solved 1000 issues and had 100 employees working today, how many could we have solved
with a team twice as big? counterfactual
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How? A graphical framework
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Causal Bayesian networks

Random vector X = (X1, ...,Xd)

Let G be a directed acyclic graph (DAG)

▶ d vertices (one per Xi )

▶ edges indicate causal relationships

Encodes (conditional) independence constraints (via
d-separation, see Koller & Friedman [2009])

Distribution PX : P(X ) =
∏d

i=1 P(Xi |XπG
i
),

where πG
i = parents of i in G
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Interventions: graph surgery

Observations

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P(a, y , z) = P(z)P(a | z)P(y | a, z)

Intervention

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P ′(a, y , z) = P(z)P ′(a)P(y | a, z)
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P ′(a, y , z) = P(z)P ′(a)P(y | a, z)

� Important: notice how conditionals that are not under intervention are
invariant across distributions (a.k.a, modularity/autonomy).
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P ′(a, y , z) = P(z)P ′(a)P(y | a, z)

Randomization is one way that can be used to obtain such a graph
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Causal inference from observational data

Objective: estimate the effect of an intervention: E[Y | do(A = a)]

randomization is not always possible
e.g., life threatening, detrimental to the economy, etc.

Observational distribution

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

placeholder

−→

Interventional distribution

Z

A Y

Z

A Y

Z

A Y

Z

A Y

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

How? Identification: transform a causal estimand (with do(.)) into a purely statistical one (no do(.)).
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Z

A Y

How? Identification: transform a causal estimand (with do(.)) into a purely statistical one (no do(.)).
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Interventions: truncated factorization

Observations

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P(a, y , z) = P(z)P(a | z)P(y | a, z)

Intervention
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A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P(a, y , z |do(A = a′)) = P(z) δa=a′ P(y | a, z)

Alexandre Drouin Introduction to causal inference July 11, 2022 19 / 38



Interventions: truncated factorization

Observations

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P(a, y , z) = P(z)P(a | z)P(y | a, z)

Intervention

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y

P(a, y , z |do(A = a′)) = P(z) δa=a′ P(y | a, z)

Truncated factorization: the general expression for such interventional distributions in CBNs

P(x1, . . . , xd | do(Xi = x ′
i )) =

∏d
j=1;j ̸=i P(xj | xπG

j
) · δxi=x′i
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Identification: parent adjustment (or standardization)

P(y | do(A = a′)) =
∑
a

∑
z

P(a, y , z | do(A = a′))

< Truncated factorization >

=
∑
a

∑
z

P(y | a′, z) · P(z) · δa=a′

< Density is zero for all a ̸= a′ >

= 0 +
∑
z

P(y | a′, z) · P(z) · 1

< Cleaning up a bit >

=
∑
z

P(y | a′, z) · P(z)

ATE(a, a′) = E[Y | do(A = a)]− E[Y | do(A = a′)]

=
∑
z

[
E[Y | a, z]− E[Y | a′, z]

]
P(z)

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y
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Identification: parent adjustment (unmeasured confounder)

Z2

A Y

Z1

Z2

A Y

Z1

A YZ2

Z1 Z2

A Y

Z1

Not identifiable! (and unverifiable)
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Identification: don’t just adjust for any variable

A YZ2

Z1

Conditioning on a mediator blocks the A → Y path!
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Identification: back-door adjustment

Z2

A Y

Z1

Z2

A Y

Z1

A YZ2

Z1 Z2

A Y

Z1

P(y | do(A = a′)) =
∑
z2

P(y | a′, z2) · P(z2)
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Identification: front-door adjustment

Z2

A Y

Z1

Z2

A Y

Z1

A YZ2

Z1 Z2

A Y

Z1

P(y | do(A = a′)) =
∑
z2

P(z2 | a′) ·
∑
a

P(y | a, z2) · P(a)

General case: do-calculus [Pearl, 2009]
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Part II

Research
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Causal discovery: finding causal relationships in data
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:

Causal sufficiency: no hidden confounding variables

Markov property: d-separation in the graph implies conditional independence

X1 ⊥⊥G X2 |Z =⇒ X1 ⊥⊥ X2 |Z

Faithfulness: conditional independence implies d-separation in the graph

X1 ⊥⊥ X2 |Z =⇒ X1 ⊥⊥G X2 |Z

These last two assumptions guarantee an equivalence between
properties of the data and properties of the graph
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Challenge: uncertainty in the graph structure

{ {, ,

Without making more assumptions, observational data only allows identification
up to a Markov equivalence class (MEC) [Verma & Pearl, 1991]

⋆
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Assumptions on variable types can improve identification

Credit: Philippe Brouillard

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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Assumptions on variable types can improve identification

Idea: attribute a type to each variable and constrain how members
of different types can interact (type consistency)

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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Assumptions on variable types can improve identification

{ {, ,

Contribution: we adapt DAGs, MECs, algorithms to include types

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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Assumptions on variable types can improve identification

{ {, ,

tMEC: type-based relationships invalidate some Markov-equivalent graphs

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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Assumptions on variable types can improve identification

10 20 30 40 50 60 70 80 90 100
Vertices

100

101

102

103

Si
ze

MEC
t-MEC

Identification!

Theorem: under some conditions (including a fixed number of types), the size of the
t-MEC goes to 1 exponentially fast as the number of vertices increases.

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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Interventions can also reduce uncertainty

MEC

I-MEC

I'-MEC

I''-MEC

Increasing number 
of interventions

Markov 
Equivalence Class

CPDAG

True DAG

True DAG

Interventions reveal invariances: I-MEC ⊆ MEC (see Eberhardt et al. [2005])

Example: gene knockout/knockdown experiments in biology [Dixit et al., 2016]

Z

A Y

Z

A Y

Z

A Y
Causal

Z

A Y

Z

A Y

Z

A Y

Z

A Y
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Differentiable causal discovery with interventions
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurIPS 2020.

Score-based causal discovery: find the DAG that maximizes a score function (S)
▶ E.g., data likelihood + sparsity prior

▶ Consistency: need to demonstrate that the score leads to the true solution

Ĝ ∈ argmax
G∈DAG

S(G)

Problem: search space grows superexponentially with the number of variables
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Differentiable causal discovery with interventions
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurIPS 2020.

↓ Relaxation where Gij ∼ Bernoulli(σ(Λij)),

with σ(·) := sigmoid function

Additional sparsity 
regularizer 

Intervention matrix 
is learned 

Observational parameter Interventional parameter
↓ Optimize for Λ under acyclicity constraint
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Differentiable causal discovery with interventions
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurIPS 2020.

[Zheng et al., 2018]

↓ Relaxation where Gij ∼ Bernoulli(σ(Λij)),

with σ(·) := sigmoid function

Additional sparsity 
regularizer 

Intervention matrix 
is learned 

Observational parameter Interventional parameter
↓ Optimize for Λ under acyclicity constraint
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Differentiable causal discovery with interventions
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurIPS 2020.

Probability of correct and incorrect edges w.r.t. learning step
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Other tasks and work in progress
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Learning robust models

Goal: learn robust predictors of drug resistance in bacteria (multiple hospitals)

h( )

How: use data from multiple environments and try to find invariances
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Causal representation learning

10

Fig. 2. Illustration of the causal representation learning problem setting. Perceptual data, such as images or other high-dimensional sensor measurements,
can be thought of as entangled views of the state of an unknown causal system as described in (10). With the exception of possible task labels, none of the
variables describing the causal variables generating the system may be known. The goal of causal representation learning is to learn a representation (partially)
exposing this unknown causal structure (e.g., which variables describe the system, and their relations). As full recovery may often be unreasonable, neural
networks may map the low-level features to some high-level variables supporting causal statements relevant to a set of downstream tasks of interest. For
example, if the task is to detect the manipulable objects in a scene, the representation may separate intrinsic object properties from their pose and appearance
to achieve robustness to distribution shifts on the latter variables. Usually, we do not get labels for the high-level variables, but the properties of causal models
can serve as useful inductive biases for learning (e.g., the SMS hypothesis).

Fig. 3. Example of the SMS hypothesis where an intervention (which may
or may not be intentional/observed) changes the position of one finger ( ),
and as a consequence, the object falls. The change in pixel space is entangled
(or distributed), in contrast to the change in the causal model.

as well as the property that the conditionals P (Si | PAi)
be independently manipulable and largely invariant across
related problems. Suppose we seek to reconstruct such a
disentangled representation using independent mechanisms
(11) from data, but the causal variables Si are not provided to
us a priori. Rather, we are given (possibly high-dimensional)
X = (X1, . . . , Xd) (below, we think of X as an image with
pixels X1, . . . , Xd) as in (10), from which we should construct
causal variables S1, . . . , Sn (n⌧ d) as well as mechanisms,
cf. (3),

Si := fi(PAi, Ui), (i = 1, . . . , n), (12)

modeling the causal relationships among the Si . To this
end, as a first step, we can use an encoder q : Rd ! Rn

taking X to a latent “bottleneck” representation comprising the
unexplained noise variables U = (U1, . . . , Un). The next step
is the mapping f(U) determined by the structural assignments

f1, . . . , fn. Finally, we apply a decoder p : Rn ! Rd. For
suitable n, the system can be trained using reconstruction error
to satisfy p � f � q ⇡ id on the observed images. If the causal
graph is known, the topology of a neural network implementing
f can be fixed accordingly; if not, the neural network decoder
learns the composition p̃ = p � f . In practice, one may not
know f , and thus only learn an autoencoder p̃ � q, where the
causal graph effectively becomes an unspecified part of the
decoder p̃, possibly aided by a suitable choice of architecture
[149].

Much of the existing work on disentanglement [109, 158,
159, 256, 157, 135, 202, 61] focuses on independent factors
of variation. This can be viewed as the special case where the
causal graph is trivial, i.e., 8i : PAi = ; in (12). In this case,
the factors are functions of the independent exogenous noise
variables, and thus independent themselves.7 However, the ICM
Principle is more general and contains statistical independence
as a special case.

Note that the problem of object-centric representation
learning [10, 39, 83, 86, 87, 138, 155, 160, 262, 255] can
also be considered a special case of disentangled factorization
as discussed here. Objects are constituents of scenes that
in principle permit separate interventions. A disentangled
representation of a scene containing objects should probably
use objects as some of the building blocks of an overall
causal factorization8, complemented by mechanisms such as
orientation, viewing direction, and lighting.

The problem of recovering the exogenous noise variables
is ill-defined in the i.i.d. case as there are infinitely many
equivalent solutions yielding the same observational distribu-

7For an example to see why this is often not desirable, note that the
presence of fork and knife may be statistically dependent, yet we might want
a disentangled representation to represent them as separate entities.

8Objects can be represented at different levels of granularity [207], i.e. as
a single entity or as a composition of other causal variables encoding parts,
properties, and other factors of variation.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal,
A., & Bengio, Y. (2021). Toward causal representation learning. Proceedings
of the IEEE, 109(5), 612-634.

Given perceptual data, recover the state of an unknown causal system.
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Causal representation learning (work in progress)

ZC

A YZM
Observable

Recover and correctly segment latent confounders and mediators.
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Conclusion

Causal inference: estimating the effect of actions from data

Need to be careful when using ML for decision making

There exists a number of tasks where:
▶ ML can help CI

▶ CI can help ML

Some interesting tasks that I didn’t mention:
▶ Causal reinforcement learning (use observational data)

▶ Causal fairness (counterfactuals)

Thank you!
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