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Outline

Part I: Introduction to causal inference

© What is causal inference?
© Why should you care about causality?

© How? A graphical framework
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= This is a primer for the practical session that will happen this afternoon.

Alexandre Drouin Introduction to causal inference July 11, 2022



Outline

Part I: Introduction to causal inference

© What is causal inference?
© Why should you care about causality?
© How? A graphical framework

= This is a primer for the practical session that will happen this afternoon.

Part Il: Research

© Causal discovery

© Other tasks and work in progress
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Correlation does not imply causation

Credit: Brady Neal
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Correlation does not imply causation

Credit: Brady Neal
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What is causal inference?

@ In short: using data to estimate the effect of actions
> Effect of a treatment on a disease
» Effect of interest rates on inflation
» Effect of acting according to some policy (e.g., public policy, RL)
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What is causal inference?

@ In short: using data to estimate the effect of actions

> Effect of a treatment on a disease
» Effect of interest rates on inflation
» Effect of acting according to some policy (e.g., public policy, RL)

More accurately

Causal inference is a field of study that explores how:
@ Data
@ Assumptions about this data

can be combined to answer certain types of questions (and which cannot be answered).
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Different types of questions

Counterfactuals

Imagining
Interventions What if I had done ... ?
. ?
Doing Why:
Associations What would I do ... ?
Seeing How?

What if I see ... ?

Credit: Alycia N. Carey and Xintao Wu

Some questions are harder to answer than others
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Different types of questions

Counterfactuals

Imagining
* Interventions What if I had done ... ?
Doing Why?
* Associations What would I do ... ?
Seeing How?

What if I see ... ?

Credit: Alycia N. Carey and Xintao Wu

Today, we will focus on estimating the effect of interventions.
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Interventional quantities for decision-making
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Interventional quantities for decision-making

o Average treatment effect: E[Y | do(A = a)] — E[Y | do(A = a')]

» Effect of wearing masks on COVID-19 contaminations

» Effect of a new user interface on customer satisfaction
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Interventional quantities for decision-making

o Average treatment effect: E[Y | do(A = a)] — E[Y | do(A = a')]

» Effect of wearing masks on COVID-19 contaminations

» Effect of a new user interface on customer satisfaction

o Conditional average treatment effect: E[Y | X, do(A = a)] —E[Y | X,do(A = a")]

> Effect on sales ($) of sending e-mail discounts to customers that are older than 30 yo.
» Effect on survival of a treatment for individuals with a particular genotype.

» Contextual bandits
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Interventional quantities for decision-making

o Average treatment effect: E[Y | do(A = a)] — E[Y | do(A = a')]

» Effect of wearing masks on COVID-19 contaminations

» Effect of a new user interface on customer satisfaction

o Conditional average treatment effect: E[Y | X, do(A = a)] —E[Y | X,do(A = a")]

> Effect on sales ($) of sending e-mail discounts to customers that are older than 30 yo.
» Effect on survival of a treatment for individuals with a particular genotype.

» Contextual bandits

@ Individualized treatment effect: pushing the specificity of X to the limit.

> Personalized medicine
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Why should you care about causality?
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A]
Yes (A = 1) 78% (273/250)
No (A = 0) 83% (289/350)

Example adapted from Julious & Mullee [1994]
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A]
Yes (A = 1) 78% (273/250)
No (A = 0) 83% (289/350)

Overall: The treatment seems detrimental.

Alexandre Drouin

Example adapted from Julious & Mullee [1994]

E[Y |A=1]—E[Y |A=0] = —5%
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A] E[Y|A,Z=mild] E[Y|A, Z=severe]
Yes (A=1) 78% (273/250) 93% (81/87) 73% (192/263)
No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Mild illness: the treatment is beneficial.

Example adapted from Julious & Mullee [1994]

E[Y |A=1,Z =mild] —E[Y | A= 0, Z = mild] = 6%
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A motivational example

Recovery rate of patients with kidney stones (after 5 months)

Treatment E[Y | A] E[Y|A,Z=mild] E[Y|A, Z=severe]
Yes (A=1) 78% (273/250) 93% (81/87) 73% (192/263)
No (A = 0) 83% (289/350) 87% (234/270) 69% (55/80)

Severe illness: the treatment is beneficial.

Example adapted from Julious & Mullee [1994]

E[Y |A=1,Z =severe] - E[Y | A= 0,Z = severe] = 4%

Alexandre Drouin
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Doctors act according to a policy

o o

Alexandre Drouin Introduction to causal inference July 11, 2022 10/38




Doctors act according to a policy

Z = mild

o o
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Doctors act according to a policy

Z = mild

You'll be fine, A=0.
4

o o
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Doctors act according to a policy

o o
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Doctors act according to a policy

Z = severe

o o
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Doctors act according to a policy

Z = severe

You need treatment, A = 1!

o o

Alexandre Drouin Introduction to causal inference




The A — Y relationship is confounded

Treatment: A € {0,1}

Recovery: Y € {0,1}

Severity: Z € {mild, severe}

Treatment

E[Y | A]

E[Y | A, Z = mild]

E[Y | A, Z = severe]

Yes (A=1)

78% (273/250)

93% (81/87)

73% (192/263)

No (A = 0)

83% (289/350)

87% (234/270)

69% (55/80)

Confounding: patients with a severe illness are more likely to receive treatment and
also more likely to have a bad outcome.
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The A — Y relationship is confounded

Treatment: A € {0,1}

Recovery: Y € {0,1}

Severity: Z € {mild, severe}

Causal

Treatment

E[Y | A]

E[Y | A, Z = mild]

E[Y | A, Z = severe]

Yes (A=1)

78% (273/250)

93% (81/87)

73% (192/263)

No (A = 0)

83% (289/350)

87% (234/270)

69% (55/80)

Confounding: patients with a severe illness are more likely to receive treatment and
also more likely to have a bad outcome.
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[llustration of the difference between conditioning and intervening

Population Subpopulations Conditioning Intervening
: : ‘ p .
or or

Credit: Brady Neal
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Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:
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Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

@ What is the expected number of issues solved per hour if we have 100 employees working?
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Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

@ What is the expected number of issues solved per hour if we have 100 employees working? associative

@ How many issues can we expect to solve if | make 100 employees work today?
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Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

@ What is the expected number of issues solved per hour if we have 100 employees working? associative
@ How many issues can we expect to solve if | make 100 employees work today? interventional

@ Given that we solved 1000 issues and had 100 employees working today, how many could we have solved
with a team twice as big?

Alexandre Drouin Introduction to causal inference July 11, 2022 14 /38



Quiz time: are these questions associative or interventional?

Suppose that you manage a customer support center and want to study its efficiency:

@ What is the expected number of issues solved per hour if we have 100 employees working? associative
@ How many issues can we expect to solve if | make 100 employees work today? interventional

@ Given that we solved 1000 issues and had 100 employees working today, how many could we have solved
with a team twice as big? counterfactual
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How? A graphical framework
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Causal Bayesian networks

@ Random vector X = (Xi, ..., X4)
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Causal Bayesian networks

@ Random vector X = (Xi, ..., X4)

o Let G be a directed acyclic graph (DAG) @
> d vertices (one per X;)

> edges indicate causal relationships e
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Causal Bayesian networks

@ Random vector X = (Xi, ..., X4)

o Let G be a directed acyclic graph (DAG)

> d vertices (one per X;)

> edges indicate causal relationships : : @

@ Encodes (conditional) independence constraints (via
d-separation, see Koller & Friedman [2009])
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Causal Bayesian networks

Random vector X = (X, ..., X4)

o Let G be a directed acyclic graph (DAG) @

> d vertices (one per X;)

> edges indicate causal relationships e

Encodes (conditional) independence constraints (via
d-separation, see Koller & Friedman [2009])

Distribution Px: P(X) = [1", P(Xi|X_¢), @

g — parents of i in G

i

where 7
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Interventions: graph surgery

Observations

P(a,y,z) = P(z) P(a| 2) P(y | a,2)
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Interventions: graph surgery

Observations Intervention

1

P(a,y,z) = P(z) P(a| 2) P(y | a,2) P'(a,y,z) = P(z) P'(a) P(y | a,2)
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Interventions: graph surgery

Observations Intervention

1

P(a,y,z) = P(z) P(a| 2) P(y | 3, 2) P'(a,y,z) = P(z) P'(2a) P(y | a,2)

A Important: notice how conditionals that are not under intervention are
invariant across distributions (a.k.a, modularity/autonomy).
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Interventions: graph surgery

Observations Intervention

X
Kb

P(a,y,z) = P(z) P(a| 2) P(y | a,2) P'(a,y,z) = P(z) P'(a) P(y | & 2)

Randomization is one way that can be used to obtain such a graph
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Causal inference from observational data

@ Objective: estimate the effect of an intervention: E[Y | do(A = a)]

L randomization is not always possible
g., life threatening, detrimental to the economy, etc.

Observational distribution Interventional distribution

a <
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Causal inference from observational data

@ Objective: estimate the effect of an intervention: E[Y | do(A = a)]

L randomization is not always possible
e.g., life threatening, detrimental to the economy, etc.

Observational distribution Interventional distribution

- B

/\/\

@ How? Identification: transform a causal estimand (with do(.)) into a purely statistical one (no do(.)).
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Interventions: truncated factorization

Observations Intervention

ry

P(avyfz):P(Z)P(alz)P(y|372) P(a,y,z|do(A:a/)):P(z)éa:a/ P(y | 372)
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Interventions: truncated factorization

Observations Intervention

1

P(a,y,z) = P(z)P(a|z) P(y | a,2) P(a,y, z|do(A=3a")) = P(z) 0. P(y | a,2)

Truncated factorization: the general expression for such interventional distributions in CBNs

P(xt, . xa | do(X; = x!)) = [Ty, PO | x 79) O
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|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))
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|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))

< Truncated factorization >

=> "> Plyla,z)-P(2) b
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|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))
< Truncated factorization >

=> "> Plyla,z)-P(2) b

< Density is zero for all a # a2’ >

=0+)Y P(yla,z)-P(z)-1

Alexandre Drouin Introduction to causal inference July 11, 2022 20/38



|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))
< Truncated factorization >

=> "> Plyla,z)-P(2) b

< Density is zero for all a # a2’ >

=0+)Y P(yla,z)-P(z)-1

< Cleaning up a bit >

=Y Py 14,2) P(2)
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|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))

< Truncated factorization >
=> "> Plyla,z)-P(2) b

< Density is zero for all a # a2’ >

@ =0+ P(r]42) Pl2)- 1
< Cleaning up a bit >

=Y Py 14,2) P(2)

ATE(a,a’) = E[Y | do(A = a)] — E[Y | do(A = a)]
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|dentification: parent adjustment (or standardization)

P(y | do(A ZZPay,z\do =3a'))

< Truncated factorization >
=> "> Plyla,z)-P(2) b

< Density is zero for all a # a2’ >

@ =0+ P(r]42) Pl2)- 1
< Cleaning up a bit >

=Y Py 14,2) P(2)

ATE(a,a’) = E[Y | do(A = a)] — E[Y | do(A = a)]
=" [ElY |2z - BV | . 2]] P(2)
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Identification: parent adjustment (unmeasured confounder)

Not identifiable! (and unverifiable)
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Identification: don’t just adjust for any variable

Conditioning on a mediator blocks the A — Y path!
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Identification: back-door adjustment

P(y|do(A=3") =) P(y|d z) P(z)
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Identification: front-door adjustment

P(yldo(A=a") =) P(z|a) Y Ply|az) Pa)
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Identification: front-door adjustment

P(yldo(A=a") =) P(z|a) Y Ply|az) Pa)

General case: do-calculus [Pearl, 2009]
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Causal discovery: finding causal relationships in data

Observational data

Interventional data

Xl XZ X3
sample 1 12 26 02
sample 2 23 54 05
sample n 09 19 01

Intervention #3|

sample 1 12 26 02

..| sample 2 23 54 05
sampl

sample n 09 19 01

Introduction to causal inference
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:

o Causal sufficiency: no hidden confounding variables
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence

X1JJ_gX2|Z:>X1J_LX2|Z
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence

X1JJ_gX2|Z:>X1J_LX2|Z

o Faithfulness: conditional independence implies d-separation in the graph

X1LXQ|ZﬁX1J_LgX2|Z
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Sacrifices to make: assumptions

To make this possible, we need to make assumptions. Some common ones include:

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence

X1JJ_gX2|Z:>X1J_LX2|Z

o Faithfulness: conditional independence implies d-separation in the graph

X1LXQ|ZﬁX1J_LgX2|Z

These last two assumptions guarantee an equivalence between
properties of the data and properties of the graph
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Challenge: uncertainty in the graph structure

121
1.50

0.96

1.58
1.84

1.07

0.33
0.51

0.11

= L% ™o}

Without making more assumptions, observational data only allows identification
up to a Markov equivalence class (MEC) [Verma & Pearl, 1991]
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Assumptions on variable types can improve identification

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.

7 \\‘/

ﬁ _
| o T’

Credit: Philippe Brouillard
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Assumptions on variable types can improve identification

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.

Idea: attribute a type to each variable and constrain how members
of different types can interact (type consistency)
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Assumptions on variable types can improve identification

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.

121
1.50

0.96

1.58
1.84

1.07

0.33
0.51

0.11

{0 o)

Contribution: we adapt DAGs, MECs, algorithms to include types
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Assumptions on variable types can improve identification

Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).
Typing assumptions improve identification in causal discovery. CLeaR 2022.
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tMEC: type-based relationships invalidate some Markov-equivalent graphs
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Assumptions on variable types can improve identification
Brouillard, P., Taslakian, P., Lacoste, A., Lachapelle, S., & Drouin, A. (2022).

Typing assumptions improve identification in causal discovery. CLeaR 2022.

Identn‘lcatlor
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Theorem: under some conditions (including a fixed number of types), the size of the
t-MEC goes to 1 exponentially fast as the number of vertices increases.
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Interventions can also reduce uncertainty

n

Increasing number
of interventions

@ Interventions reveal invariances: |-MEC C MEC (see Eberhardt et al. [2005])

o Example: gene knockout/knockdown experiments in biology [Dixit et al., 2016]
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurlPS 2020.

@ Score-based causal discovery: find the DAG that maximizes a score function (S)

» E.g., data likelihood + sparsity prior

> Consistency: need to demonstrate that the score leads to the true solution

Alexandre Drouin

G € argmax S(9)

GEDAG
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurlPS 2020.

@ Score-based causal discovery: find the DAG that maximizes a score function (S)
» E.g., data likelihood + sparsity prior

> Consistency: need to demonstrate that the score leads to the true solution

G € argmax S(G)

GEDAG

@ Problem: search space grows superexponentially with the number of variables
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurlPS 2020.

K
Sm(@) = sup D Expw log B (X;G, 1%, 6) — A|Gllo
k=1

K
Sp(A):=sup E Y E logf®(X;G, T ¢)— A

f=1X"~P

G

0

supSp=(A) s.t.  Tr <c”<A)) —d=0
A

Acyclicity constraint
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Differentiable causal discovery with interventions _
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020). E
Differentiable causal discovery from interventional data. NeurlPS 2020. v 4 L ‘.

K
S+ (G) = sngEXN,,m log f*)(X;G, 1%, ¢) — |Gl

k=1
Relaxation where Gj ~ Bernoulli(o(Ay)),
\L with o(+) := sigmoid function
- I
S(A) sup E > \/ log f*)(X; G, T*, ¢) — \||G|o

supSp=(A) s.t.  Tr <(ﬁ”<A)) —d=0
A

Acyclicity constraint
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020). E m I
Differentiable causal discovery from interventional data. NeurlPS 2020.
K
k
S (G) :==sup ¥ Ex.,m log f®(X;G,I*,6) — M|Gllo
¢ k=1

Relaxation where Gj ~ Bernoulli(o(Aj)),

]

with o(+) := sigmoid function

K
Sp)=swp E > E log fM(X;G, 1, ¢) - N|Gllo
¢ Gro(A) k_ervp(k)

supSp«(A) s.t. Tr (e“(‘\)) —d=0
A

Acyclicity constraint

Alexandre Drouin Introduction to causal inference July 11, 2022 32/38



Differentiable causal discovery with interventions
Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020). E m
Differentiable causal discovery from interventional data. NeurlPS 2020.

K
S+ (@) := sngEXN,)m log f®(X;G,I*,¢) — M| Gllo

k=1
Relaxation where Gj ~ Bernoulli(o(Aj)),

\L with o(+) := sigmoid function
R K
Se(A):=swp E |Y E log fP(X;G.1*¢) - N|Gllo
¢ Gro(A) | £t Xnp®)

\l/ Optimize for A under acyclicity constraint

supSp«(A) s.t. Tr (e“(‘\)) —d=0
A

Acyclicity constraint
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurlPS 2020.

ey e

K
Sp=(G) :=sup Y Ex. o log f¥(X;G, %, ¢) — \[|Gllo

k=1
\L Relaxation where G ~ Bernoulli(a(Aj)),
with o(-) := sigmoid function
Sp#(A) := sup Z E log f®(X;G,I*, ¢) — \|G|o
® G~U(A) = Xrp®

\L Optimize for A under acyclicity constraint

supSp«(A) st Tr (e”(A)) —-d=0
A _

[\

2
o . . Zh 1., 2018;
Acyclicity constraint “"" ™
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Differentiable causal discovery with interventions

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., & Drouin, A. (2020).
Differentiable causal discovery from interventional data. NeurlPS 2020.
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Other tasks and work in progress
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Learning robust models

@ Goal: learn robust predictors of drug resistance in bacteria (multiple hospitals)
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Learning robust models

o Goal: learn robust predictors of

h(giEs )=

o How: use data from multiple en
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drug resistance in bacteria (multiple hospitals)
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Causal representation learning

-

oo O e T

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal,’
A., & Bengio, Y. (2021). Toward causal rep jon learning. Proceedi
of the IEEE, 109(5), 612-634.

Given perceptual data, recover the state of an unknown causal system.
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Causal representation learning (work in progress)

Recover and correctly segment latent confounders and mediators.
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Conclusion

o Causal inference: estimating the effect of actions from data

Thank you!
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Conclusion

Causal inference: estimating the effect of actions from data

Need to be careful when using ML for decision making

There exists a number of tasks where:
» ML can help Cl
» Cl can help ML

Some interesting tasks that | didn’t mention:
> Causal reinforcement learning (use observational data)
» Causal fairness (counterfactuals)

Thank you!
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