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Introduction and Motivation
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The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

Example taken from [Peters et al., 2017]

P(A,T ) = P(A|T )P(T )

= P(T |A)P(A)

If altitude ↑ then temperature ↓
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The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

Example taken from [Peters et al., 2017]

P(A,T ) = P(A|T )P(T )

= P(T |A)P(A)

Will cooling house #1 make it climb the mountain?
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The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

Example taken from [Peters et al., 2017]

P(A,T ) = P(A|T )P(T )

= P(T |A)P(A)

Will pushing house #2 down the mountain change its temperature?
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Why care about causal relationships: Simpson’s paradox

Recovery of kidney stone patients

Example taken from Julious & Mullee [1994]

Small stones: treatment a more effective

Large stones: treatment a more effective

All patients: treatment b more effective!
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Simpson’s paradox: what’s really going on?

T = Treatment ∈ {A,B}

S = Stone size ∈ {small, large}

R = Patient recovered ∈ {0, 1}

Confounding: patients with small stones are more likely to receive
treatment b and also more likely to have a good outcome.
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Causal vs non-causal questions

Non-causal: What is the probability of recovery given that the doctor assigned treatment A?

P(R = 1 | T = A)

Causal: What’s the probability of recovery if treatment A is used irrespective of the size
of the stones?

P(R = 1 | do(T = A))
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Causal Bayesian networks

Random vector X = (X1, ...,Xd )

Let G be a directed acyclic graph (DAG)

I d vertices (one per Xi )

I edges indicate causal relationships

Encodes (conditional) independence constraints
(via d-separation, see Koller & Friedman [2009])

Distribution PX : p(X ) =
∏d

i=1 p(Xi |XπGi
),

where πGi = parents of i in G
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Interventions

Observational data: may contain biases

P(R = 1 | T = A) 6= P(R = 1 | do(T = A))
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Interventions

Perfect intervention: edges into T are removed (e.g., via randomization)

P(R = 1 | T = A) = P(R = 1 | do(T = A))
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Interventions

Imperfect intervention: incoming edges are preserved, conditionals are changed.
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Interventions

o Important: notice how conditionals that are not under intervention are
invariant across distributions (a.k.a, modularity/autonomy).
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Causal inference from observational data

Objective: estimate an causal quantity P(R = 1 | do(T = A))

randomization may not be possible (e.g., unethical)

Observational distribution Interventional distribution

−→

Identification: transforming a causal quantity into a purely statistical one
I do-calculus [Pearl, 2009] automates this and is even complete [Huang & Valtorta, 2006; Shpitser & Pearl, 2006]

Example: covariate adjustment

P(R = 1 | do(T = A)) =
∑

s∈{small,large}
P(R = 1 | T = A, S = s) P(S = s)
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Causal inference from observational data

Objective: estimate an causal quantity P(R = 1 | do(T = A))

randomization may not be possible (e.g., unethical)

Observational distribution Interventional distribution

−→

Identification: transforming a causal quantity into a purely statistical one
I do-calculus [Pearl, 2009] automates this and is even complete [Huang & Valtorta, 2006; Shpitser & Pearl, 2006]

What if you don’t know the causal graph?
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Causal Discovery
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Problem statement
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Common assumptions

To make this possible, we need to make assumptions

Causal sufficiency: no hidden confounding variables

Markov property: d-separation in the graph implies conditional independence

X1 ⊥⊥G X2 |Z =⇒ X1 ⊥⊥PX
X2 |Z

Faithfulness: conditional independence implies d-separation in the graph

X1 ⊥⊥PX
X2 |Z =⇒ X1 ⊥⊥G X2 |Z

These last two assumptions guarantee an equivalence between
properties of the data and properties of the graph
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Score-based causal discovery

Idea: find the DAG that maximizes a score function (S)
I E.g., data likelihood + sparsity prior

I Consistency: need to demonstrate that the score leads to the true solution

Ĝ ∈ arg max
G∈DAG

S(G)

Problem: search space grows superexponentially with variables

Examples: Greedy Equivalence Search [Chickering, 2003], DAG with NO TEARS [Zheng et al., 2018]
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Identifiability of the DAG

Markov 
Equivalence Class

CPDAG

True DAG

Without making more assumptions, observational data only allows
identification up to a Markov equivalence class (MEC) [Verma & Pearl, 1991]
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Can you shrink the equivalence class?

Interventional Markov equivalence classes

MEC

I-MEC

I'-MEC

I''-MEC

Increasing number 
of interventions

Markov 
Equivalence Class

CPDAG

True DAG

True DAG

An I-MEC is a subset of the MEC (see Eberhardt et al. [2005])

Example: gene knockout/knockdown experiments in biology [Dixit et al., 2016]
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Differentiable Causal Discovery with Interventional Data
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DCDI Fact Sheet:

Type: score-based

Search strategy: continuous-constrained optimization [Zheng et al., 2018]

Data: observational and interventional (perfect/imperfect)

Theoretical guarantees: consistency in the limit of infinite data
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Interventional distributions and the invariance property

Interventional
targets

4

1

23

Observational

I1 = {}

 

Experiment 1

I2 = {X2}

4

1

23

Experiment 2

I3 = {X1, X4}

4

1

23

p(1)(x1, ..., x4) := p(1)(x1)p(1)(x3|x1)p(1)(x2|x1, x3)p(1)(x4|x1, x2, x3)
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)

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 19 / 31



DCDI: problem setting and notation

We observe d variables which are causally sufficient, i.e. no hidden confounders.

Causal DAG = G =

0 0 1
1 0 1
0 0 0


︸ ︷︷ ︸
Adjacency matrix

∈ {0, 1}d×d

We have K , potentially imperfect, interventions which can target multiple variables
simultaneously.

I =

(
0 0 0
0 1 1

)
︸ ︷︷ ︸

Intervention matrix

∈ {0, 1}K×d
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DCDI: model architecture

$GGLWLRQDO�VSDUVLW\�
UHJXODUL]HU�

,QWHUYHQWLRQ�PDWUL[�
LV�OHDUQHG�

2EVHUYDWLRQDO�SDUDPHWHU ,QWHUYHQWLRQDO�SDUDPHWHU

The graph adjacency matrix acts as a mask that filters the input variables.
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DCDI: model architecture

$GGLWLRQDO�VSDUVLW\�
UHJXODUL]HU�

,QWHUYHQWLRQ�PDWUL[�
LV�OHDUQHG�

2EVHUYDWLRQDO�SDUDPHWHU ,QWHUYHQWLRQDO�SDUDPHWHU

Each conditional distribution is estimated by a distinct neural network.
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DCDI: model architecture

$GGLWLRQDO�VSDUVLW\�
UHJXODUL]HU�

,QWHUYHQWLRQ�PDWUL[�
LV�OHDUQHG�

2EVHUYDWLRQDO�SDUDPHWHU ,QWHUYHQWLRQDO�SDUDPHWHU

The joint likelihood is calculated as the product of conditional distributions (obs/int)
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DCDI: model architecture

$GGLWLRQDO�VSDUVLW\�
UHJXODUL]HU�

,QWHUYHQWLRQ�PDWUL[�
LV�OHDUQHG�

2EVHUYDWLRQDO�SDUDPHWHU ,QWHUYHQWLRQDO�SDUDPHWHU

The intervention matrix I activates the right set of parameters.

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 21 / 31



DCDI: graph scoring function (discrete)

We suggest maximizing this score over the space of DAGs:

th ground truth intervention Sparsity regularization

Search: discrete search over DAGs → continuous-constrained opt. problem [Zheng et al., 2018]
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DCDI: theoretical justification

G∗ = ground-truth DAG

I∗ = ground-truth intervention matrix

Ĝ ∈ arg maxG∈DAG SI∗ (G) is the estimator.

Theorem (Identification via score maximization)

Suppose I∗1,: = ∅. Given that

1 Each variable is individually targeted by an intervention;

2 The model has enough capacity to express the ground truth;

3 The regularization coefficient λ > 0 is small enough;

4 And some more technical assumptions, e.g. I∗-faithfulness... (See paper)

then

Ĝ = G∗

More general result

Without the first assumption, we can identify the I∗-Markov equivalence classa of G∗.
aWe use the notion of I∗-Markov equivalence of Yang et al. [2018].
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DCDI: making the search efficient

↓ Relaxation where Gij ∼ Bernoulli(σ(Λij )),

with σ(·) := sigmoid function

Additional sparsity 
regularizer 

Intervention matrix 
is learned 

Observational parameter Interventional parameter↓ Optimize for Λ under acyclicity constraint

[Zheng et al., 2018]
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DCDI: optimization & gradient estimation

Optimize jointly Λ and φ (NN parameters)

Optimization: Augmented Lagrangian Method + RMSprop (as in Lachapelle et al. [2020])

Discrete sampling: gradient w.r.t. Λ estimated via Gumbel-Softmax Straight-Through
estimator [Jang et al., 2017; Maddison et al., 2017].

Masks and/or the Gumbel-Softmax estimator were used before in causal discovery
e.g., Kalainathan et al. [2018]; Ng et al. [2019]; Bengio et al. [2019]; Ke et al. [2019]
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Result: structure learning via continuous optimization

Optimizing the objective gradually prunes anti-causal edges from the graph
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DCDI: interventions with unknown targets

Until now we assumed that I∗ was known, i.e. we knew which variables were targeted.

What if we don’t? (e.g., as in Ke et al. [2019])

Learn it!

Additional sparsity 
regularizer 

Intervention matrix 
is learned 

Learning:

I Can do the same relaxation Ikj ∼ Bernoulli(σ(βkj )).

I Optimize jointly for φ, Λ and β.

Theory: We showed the same guarantee holds for this score!
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DCDI: choice of density function f̃

Gaussian: corresponds to a non-linear + additive noise assumption on the functional
form of causal mechanisms

I Identification guaranteed if it actually holds in the distribution [Peters et al., 2014]

Deep sigmoidal flow: a type of normalizing flow that was shown to be a universal
density approximator [Huang et al., 2018]

I No assumption on functional forms

I Identification guaranteed by our Thm 1 (with enough interventions)

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 28 / 31



DCDI: choice of density function f̃

Gaussian: corresponds to a non-linear + additive noise assumption on the functional
form of causal mechanisms

I Identification guaranteed if it actually holds in the distribution [Peters et al., 2014]

Deep sigmoidal flow: a type of normalizing flow that was shown to be a universal
density approximator [Huang et al., 2018]

I No assumption on functional forms

I Identification guaranteed by our Thm 1 (with enough interventions)

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 28 / 31



Results – Structural Hamming Distance (lower is better)

DCDI-G = DCDI with Gaussian density
DCDI-DSF = DCDI with deep sigmoidal flow

ANM = nonlinear with additive noise
NN = nonlinear (no additive noise)
e = average number of parents
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Figure: Known target interventions (20 nodes)
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Conclusions and Future Directions
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Conclusion & Future Work

We proposed DCDI, a causal discovery algorithm that:

is theoretically grounded

supports perfect, imperfect and unknown-target interventions

scales well with sample size (compared to methods using kernel-based independence tests)

achieves state-of-the-art performance, especially on denser graphs

Future work:

More extensive evaluation: beyond synthetic data, violate assumptions [Gentzel et al., 2019]

Relax causal sufficiency: allow for hidden confounders [Bhattacharya et al., 2020]

Time series: non-stationnarities as imperfect interventions [Pamfil et al., 2020]

Learning variable representations: not being agnostic to the nature of variables
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Thank you!

1 Mila & DIRO, Université de Montréal 2 Element AI / ServiceNow ∗ Equal contribution

� https://github.com/slachapelle/dcdi

R alexandre.drouin@servicenow.com 7 @alexandredrouin

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 31 / 31

https://github.com/slachapelle/dcdi
mailto:alexandre.drouin@servicenow.com
https://twitter.com/alexandredrouin


References
Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., & Pal, C. (2019). A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint

arXiv:1901.10912.

Bhattacharya, R., Nagarajan, T., Malinsky, D., & Shpitser, I. (2020). Differentiable causal discovery under unmeasured confounding. arXiv preprint arXiv:2010.06978.

Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research.

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-Arnon, L., Marjanovic, N. D., Dionne, D., Burks, T., Raychowdhury, R., Adamson, B., Norman, T. M., Lander, E. S., Weissman, J. S.,

Friedman, N., & Regev, A. (2016). Perturb-seq: Dissecting molecular circuits with scalable single-cell rna profiling of pooled genetic screens. Cell, 167(7), 1853–1866.e17.

Eberhardt, F., Glymour, C., & Scheines, R. (2005). On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables. In Proceedings of
the Twenty-First Conference on Uncertainty in Artificial Intelligence, UAI’05 (pp. 178184). Arlington, Virginia, USA: AUAI Press.

Gentzel, A., Garant, D., & Jensen, D. (2019). The case for evaluating causal models using interventional measures and empirical data. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F.
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