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The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

Example taken from [Peters et al., 2017]

P(A, T) = P(AIT)P(T)
= P(TIA)P(A)

If altitude 1 then temperature |
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The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

P(A, T) = P(AIT)P(T)
= P(TIA)P(A)

Example taken from [Peters et al., 2017]

Will cooling house #1 make it climb the mountain?




The limits of statistical association

Consider the relationships between altitude (A) and temperature (T)

P(A, T) = P(AIT)P(T)
= P(TIA)P(A)

Example taken from [Peters et al., 2017]

Will pushing house #2 down the mountain change its temperature?




Why care about causal relationships: Simpson’s paradox

Recovery of kidney stone patients

Patients with Patients with

Overall
small stones large stones

Treatment a:
Open surgery

8% (273/350)  93% (81/87)  73% (192/263)

Treatment b:

Percutancous
nephrolithotomy

83% (289/350) 87% (234/270)  69% (55/80)
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Why care about causal relationships: Simpson’s paradox

Recovery of kidney stone patients

Overall

Patients with
small stones

Patients with
large stones

Treatment a:

Open surgery 78% (273/350)

93% (81/87)

73% (192/263)

Treatment b:
Percutancous 83% (289/350)
nephrolithotomy

87% (234/270)

69% (55/80)

Example taken from Julious & Mullee [1994]

@ Small stones: treatment a more effective
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Why care about causal relationships: Simpson’s paradox

Recovery of kidney stone patients

Patients with Patients with
small stones large stones

T8% (273/350)  93% (81/87) | 73% (192/263)

Overall

Treatment a:
Open surgery

Treatment b:
Pereutancous 83% (289/350)  87% (234/270) | 69% (55/80)
nephrolithotomy

Example taken from Julious & Mullee [1994]

@ Small stones: treatment a more effective

o Large stones: treatment a more effective
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Why care about causal relationships: Simpson’s paradox

Recovery of kidney stone patients

Patients with Patients with
small stones large stones

T8% (273/350) | 93% (81/87)  73% (192/263)

Overall

Treatment a:
Open surgery
Treatment b:

Pereutancous 83% (289/350) | 87% (234/270)  69% (55/80)
nephrolithotomy

Example taken from Julious & Mullee [1994]
@ Small stones: treatment a more effective

o Large stones: treatment a more effective

=z
" [ ¢
. . -
All patients: treatment b more effective! ‘
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Simpson's paradox: what's really going on?

T = Treatment € {A, B}
S = Stone size € {small, large}

R = Patient recovered € {0, 1}

Overall Patients with Patients with
small stones large stones
Treatment a:
Open surgery 78% (273/350) | 93% (81/87)  73% (192/263)
Treatment b:
Percutaneous 83% (289/350) | 87% (234/270) 69% (55/80)
nephrolithotomy

Confounding: patients with small stones are more likely to receive
treatment b and also more likely to have a good outcome.
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Causal vs non-causal questions

o Non-causal: What is the probability of recovery given that the doctor assigned treatment A?
= P(R=1|T=A)
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Causal vs non-causal questions

@ Non-causal: What is the probability of recovery given that the doctor assigned treatment A?
L> P(R=1|T=A)

o Causal: What's the probability of recovery if treatment A is used irrespective of the size
of the stones?

L> P(R=1]do(T = A))

% ()

)
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Causal Bayesian networks

e Random vector X = (X, ..., X4)
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Causal Bayesian networks

e Random vector X = (X, ..., X4)

o Let G be a directed acyclic graph (DAG)
> d vertices (one per X;)

> edges indicate causal relationships
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Causal Bayesian networks

e Random vector X = (X, ..., X4)

o Let G be a directed acyclic graph (DAG) @

> d vertices (one per X;)

> edges indicate causal relationships e @

o Encodes (conditional) independence constraints
(via d-separation, see Koller & Friedman [2009])
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Causal Bayesian networks

e Random vector X = (X, ..., X4)

Let G be a directed acyclic graph (DAG)
> d vertices (one per X;)

> edges indicate causal relationships

o Encodes (conditional) independence constraints
(via d-separation, see Koller & Friedman [2009])

o Distribution Px: p(X) = Hf:l p(XilX_ ¢),

where ﬂ? = parents of i in G
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Interventions

Intervening on the treatment T

T = Treatment € {A, B}
S = Stone size € {small,large}
R = Patient recovered € {0,1}

Observations

p(S)p(T | S)p(R|S,T)

Observational data: may contain biases
P(R=1| T=A)#P(R=1]|do(T = A))
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Interventions

Intervening on the treatment T

T = Treatment € {A, B}
S = Stone size € {small,large}
R = Patient recovered € {0,1}

Observations Perfect intervention
X ‘:
p(S)p(T | S)p(R | S, T) p(R|S,T)

Perfect intervention: edges into T are removed (e.g., via randomization)
P(R=1| T=A)=P(R=1]|do(T = A))
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Interventions

Intervening on the treatment T

T = Treatment € {A, B}
S = Stone size € {small,large}
R = Patient recovered € {0,1}

Observations Perfect intervention Imperfect intervention

p(S)p(T | S)p(R| S, T) p(S)p(T)p(R | S, T) p(S)P(T [ S)p(R|S,T)

Imperfect intervention: incoming edges are preserved, conditionals are changed.
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Interventions

Intervening on the treatment T

T = Treatment € {A, B}
S = Stone size € {small, large}
R = Patient recovered € {0,1}

Observations Perfect intervention Imperfect intervention

p(S)p(T | S)p(R| S, T) pS)B(T)p(R [ S,T) pS)B(T | S)p(R| S, T)
A Important: notice how conditionals that are not under intervention are

invariant across distributions (a.k.a, modularity/autonomy).
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Causal inference from observational data

o Objective: estimate an causal quantity P(R =1 | do(T = A))

L— randomization may not be possible (e.g., unethical)

Observational distribution Interventional distribution

<
® . @ae
O—® O—®)
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Causal inference from observational data

o Objective: estimate an causal quantity P(R =1 | do(T = A))

L— randomization may not be possible (e.g., unethical)

Observational distribution Interventional distribution

@ (s) % &
AR E ')

o ldentification: transforming a causal quantity into a purely statistical one

> do-calculus [pear, 20000 automates this and is even complete [Huang & Valtorta, 2006; Shpitser & Pearl, 2006]
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Causal inference from observational data

o Objective: estimate an causal quantity P(R =1 | do(T = A))

L— randomization may not be possible (e.g., unethical)

Observational distribution Interventional distribution

o ldentification: transforming a causal quantity into a purely statistical one

> do-calculus [pear, 2000) automates this and is even complete [Huang & Valtorta, 2006; Shpitser & Pearl, 2006]

o Example: covariate adjustment

P(R=1|do(T=A) = > PR=1|T=AS=s)P(S=5s)
SE {small large }
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Causal inference from observational data

o Objective: estimate an causal quantity P(R =1 | do(T = A))

L randomization may not be possible (e.g., unethical)
Observational distribution Interventional distribution

% ()

— A

o ldentification: transforming a causal quantity into a purely statistical one
> do-calculus [pear, 2000) automates this and is even complete [Huang & Valtorta, 2006; Shpitser & Pearl, 2006]

What if you don’t know the causal graph?
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Problem statement

IS
g xl XZ x3
=
= sample 1 12 26 02
S
S
= sample 2 23 54 05
53
>
~
I
= sample n 09 19 01
) 99
§
S
i &)
=
S
S Intervention #3| X3
=
3
E sample 1 12 26 02
2 .| sample 2 23 54 05
kS
sample n 09 19 01
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Common assumptions

To make this possible, we need to make assumptions
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Common assumptions

To make this possible, we need to make assumptions

o Causal sufficiency: no hidden confounding variables
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Common assumptions

To make this possible, we need to make assumptions

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence

Xi g Xo|Z = Xi llp, X2|Z
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Common assumptions

To make this possible, we need to make assumptions

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence
X1dlg Xo|Z = X1 lLp, X2|Z

o Faithfulness: conditional independence implies d-separation in the graph

X1 J_LPX X2|Z:>X1 JJ_g X2|Z
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Common assumptions

To make this possible, we need to make assumptions

o Causal sufficiency: no hidden confounding variables

o Markov property: d-separation in the graph implies conditional independence
X1dlg Xo|Z = X1 lLp, X2|Z

o Faithfulness: conditional independence implies d-separation in the graph

X1 J_LPX X2|Z:>X1 JJ_g X2|Z

These last two assumptions guarantee an equivalence between
properties of the data and properties of the graph
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Score-based causal discovery

o lIdea: find the DAG that maximizes a score function (S)
> E.g., data likelihood + sparsity prior

> Consistency: need to demonstrate that the score leads to the true solution

G € argmax S(G)
GEDAG
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Score-based causal discovery

o ldea: find the DAG that maximizes a score function (S)
> E.g., data likelihood + sparsity prior

> Consistency: need to demonstrate that the score leads to the true solution

e arg max S(G)
GEDAG

@ Problem: search space grows superexponentially with variables

» ‘number of DAG with p nodes
T T
2 3
3 2
' 543
5 20281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10

377252655534 1035409218021 52863767
16 8375667077373332028769030304709641223
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Score-based causal discovery

o ldea: find the DAG that maximizes a score function (S)
> E.g., data likelihood + sparsity prior

> Consistency: need to demonstrate that the score leads to the true solution

Ge arg max S(G)
GEDAG

@ Problem: search space grows superexponentially with variables

» ‘number of DAG with p nodes
T T

2 3

3 2

' 543

5 20281

6 3781503

7 1138779265

8 783702329343

9 1213442454842881

10 1175008076430508143

1 31603459306418917607425
12 521939651343520405020504063

2377252655 182863767102
16 8375667077373332028769030304709641223522

o Examples: Greedy Equivalence Search (chickering 2003, DAG with NO TEARS (zheng et ot 2019)
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Identifiability of the DAG

Markov
Equivalence Class

Without making more assumptions, observational data only allows
identification up to a Markov equivalence class (MEC) tvems & pear, 19011
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Can you shrink the equivalence class?

Interventional Markov equivalence classes

Increasing number
of interventions
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Can you shrink the equivalence class?

Interventional Markov equivalence classes

Increasing number
of interventions

o An |-MEC is a subset of the MEC (see Eberhardt et al.

[2005])
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Can you shrink the equivalence class?

Interventional Markov equivalence classes

Increasing number
of interventions

o An |-MEC is a subset of the MEC (see Eberhardt et al. [2005])

e Example: gene knockout/knockdown experiments in biology (i et al. 2016]
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Differentiable Causal Discovery with Interventional Data
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Differentiable Causal Discovery
from Interventional Data

Philippe Brouillard* é i P A e Lacoste
Mila, Université de Montréal Mila, Univer: de Montréal Element AL
Simon Lacoste-Julien Alexandre Drouin
Mila, Université de Montréal Element Al
Canada CIFAR AT Chair
34th C on Neural Infs ion Pr ing Systems (NeurIPS 2020), Vancouver, Canada.

DCDI Fact Sheet:

o Type: score-based
@ Search strategy: continuous-constrained optimization (zneng et al., 2018]

o Data: observational and interventional (perfect/imperfect)

@ Theoretical guarantees: consistency in the limit of infinite data

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 18 /31



Interventional distributions and the invariance property

Observational Experiment 1 Experiment 2

N

N L
N ’
e ‘.’
’

targets

x ~ p® x ~ p@ x ~p®

PO (x1, ooy xa) = pM (x1)pD (x3]x1) PP (2 |x1, x3) P (x4 x1, X2, x3)
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Interventional distributions and the invariance property

Observational Experiment 1 Experiment 2

N

N L
N ’
e "
’

targets

x ~ p® x ~ p@ x ~p®

PP (x1, ooy xa) 1= P (xa)pM (x3]x1) P (2 xa, x3) M) (a1, 32, 33)
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Interventional distributions and the invariance property

Observational Experiment 1 Experiment 2

N

N L
N ’
e "
’

targets

x ~ p® x ~ p@ x ~p®

P (x1, .. xa) == ) (1) p (xs]x1) P (2 x1, x3)p1) (xa 31, 32, x3)
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Interventional distributions

Observational

TN
e‘e'e

7 oo O

and the invariance property

Experiment 1

Experiment 2

x ~ p@

I3 = {X1, Xa} ] :g:ggznt\onal

P2

P (x, ...

xg) =[] oV (xilx0) 1A%

J&

J€lk

(5lxo)
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DCDI: problem setting and notation

o We observe d variables which are causally sufficient, i.e. no hidden confounders.
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DCDI: problem setting and notation

o We observe d variables which are causally sufficient, i.e. no hidden confounders.

0 0 1
Causal DAG= G = |1 0 1] e{0,1}9%¢
0 0 0

Adjacency matrix
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DCDI: problem setting and notation

o We observe d variables which are causally sufficient, i.e. no hidden confounders.

Causal DAG= G =

o = o
o oo

1
1| e{o0,1}4%4
0

Adjacency matrix

o We have K, potentially imperfect, interventions which can target multiple variables

simultaneously.
_ 0 0 0 Kxd
I = (0 1 1) € {0,1}

——————
Intervention matrix
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DCDI: model architecture

NN(P?) \ oo

—

NN[MU\ A ’NN‘I"‘(;) \
-d

G | Em | 1] .
G, G, G
o)
x OIT1T1]

The graph adjacency matrix acts as a mask that filters the input variables.

Alexandre Drouin
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DCDI: model architecture

log f(x;; ) logf(v;-)  logf(xs )

/NN(P?)\ A /NN[MU\ A ’NN(PE;)\

G | EE T .
Gy G, Gy
©
x OOIT1T1T

Each conditional distribution is estimated by a distinct neural network.
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DCDI: model architecture

Observational parameter Interventional parameter
- Dy 7 D
F® (3G 1, ¢) := T Flass NN(G; © 5 65V)) 118 f(ajs NN(G5 © ; 5 )) o
j=1

log f(ey; ) logf(x; ) log s -)

G [ mm m mm =m = (==
@ G, Gy
o]
x IO

The joint likelihood is calculated as the product of conditional distributions (obs/int)
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DCDI: model architecture

Observational parameter Interventional parameter

. A 5 ~
F®(2;6,1, ¢) := [ f(2;;NN(G; © z; ) E03 (25, NN(Gy © ;.9 ) ) Tk

d
Jj=

1

log f(x;; ) logf(v;-)  logf(xs )

Ik]' = 1

NN”!’%” A NN¢](_I<) oo NN‘P;“

G T . T . m I
G, G, Gy

©

x OI1111]

The intervention matrix | activates the right set of parameters.

Alexandre Drouin
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DCDI: graph scoring function (discrete)

o We suggest maximizing this score over the space of DAGs:
K
S (@) :==sup ¥ Ex._,m log fP(X;G,I*,6) — N|Gllo

k=1 . . . Var
kth ground truth intervention Sparsity regularization
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DCDI: graph scoring function (discrete)

o We suggest maximizing this score over the space of DAGs:

K
S (@) :==sup ¥ Ex._,m log fP(X;G,I*,6) — N|Gllo

k=1 . . . Var
kth ground truth intervention Sparsity regularization

@ Search: discrete search over DAGs — continuous-constrained opt. problem (zneng et al. 2018)

Alexandre Drouin Differentiable Causal Discovery February 16, 2021

22 /31



DCDI: theoretical justification
e G* = ground-truth DAG

@ [* = ground-truth intervention matrix

Gearg maxgepac Si+(G) is the estimator.
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DCDI: theoretical justification
e G* = ground-truth DAG

@ [* = ground-truth intervention matrix

‘ Gearg maxgepac Si+(G) is the estimator.

Theorem (ldentification via score maximization)

Suppose I, = 0. Given that
@ Each variable is individually targeted by an intervention;
@ The model has enough capacity to express the ground truth;
© The regularization coefficient A > 0 is small enough;
@ And some more technical assumptions, e.g. |*-faithfulness... (See paper)

then
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DCDI: theoretical justification
e G* = ground-truth DAG

@ [* = ground-truth intervention matrix

’ Gearg maxgepac Si+(G) is the estimator. ‘

Theorem (ldentification via score maximization)
Suppose If. = (0. Given that
@ Each variable is individually targeted by an intervention;
@ The model has enough capacity to express the ground truth;
© The regularization coefficient A > 0 is small enough;
@ And some more technical assumptions, e.g. |*-faithfulness... (See paper)

then

v

More general result

Without the first assumption, we can identify the /*-Markov equivalence class? of G*.

?We use the notion of /*-Markov equivalence of Yang et al. [2018].

v
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DCDI: making the search efficient

K
Sp=(G) :==sup »_Ex_,m log f*(X;G,T*, ¢) — M|Gllo
k=1




DCDI: making the search efficient

K
S+ (G) == Sgpzﬁx~p<k> log f®(X;G,T*, ) — N|G|lo
k=1

\L Relaxation where Gj; ~ Bernoulli(a(Aj)),

with o(-) := sigmoid function
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DCDI: making the search efficient

K
Sp+(G) :=sup > _Ex. o log f*)(X;G,I*,¢) — A|Glo

k=1

\l, Relaxation where Gj; ~ Bernoulli(a(Aj)),

with o(+) := sigmoid function

K
Sp(A) :=sup E E log f®(X;G I*, ¢) — \|G
r):=swp E ;XW(M g /O 6) = AIGllo
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DCDI: making the search efficient

K
Sp(G) :=sup » _Ex._ 0 log f*(X;G,T%,¢) — NGl

k=1

\l, Relaxation where Gj; ~ Bernoulli(a(Aj)),

with o(+) := sigmoid function

K
S‘pt(A) ‘= Sup E E logf(k)(X’GaI*vqs) _/\“GHO
¢ Gro(A) ;X (

~p(F)

\L Optimize for A under acyclicity constraint
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DCDI: making the search efficient

K
S (G) :=sup ¥ Ex.,m log f®(X;G,I*,6) — N|Gllo

k=1
\l/ Relaxation where Gj; ~ Bernoulli(a(Aj)),

with o(-) := sigmoid function

S+ (A) := sup
P GNa(A)

Z E log f®(X;G,T*, ¢) — >\|IG||0]

* X~op(®)

\l/ Optimize for A under acyclicity constraint

supSp«(A) s.t. Tr (e"(A)> —d=0
A

N /

-

Acyclicity constraint
[Zheng et al., 2018]
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DCDI: optimization & gradient estimation

o Optimize jointly A and ¢ (NN parameters)

Tr (™) —d =0
—~
Acyclicity constraint

K
max E [> E logf®(X;G,I%,¢) - NGllo| st
k=1

¢A Gro(A) Xrp®)
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DCDI: optimization & gradient estimation

o Optimize jointly A and ¢ (NN parameters)

o(A)) _ g _
Z E_log f¥(X;G,1%,6) - AGllo Tr (o ®) -d=0

¢A Gr~a(A 7 X~p(k) ~——
a( ’ i Acyclicity constraint

o Optimization: Augmented Lagrangian Method + RMSprop (as in Lachapelle et al. [2020])
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DCDI: optimization & gradient estimation

o Optimize jointly A and ¢ (NN parameters)

K

max E E log f%(X;G,I*,¢) — N||Gl[o| St
A Gro(A) | =7 X~p®

Tr (™) —d =0
—,—*
Acyclicity constraint

o Optimization: Augmented Lagrangian Method + RMSprop (as in Lachapelle et al. [2020])

o Discrete sampling: gradient w.r.t. A estimated via Gumbel-Softmax Straight-Through

estimator pang et al., 2017; Maddison et al., 2017].
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DCDI: optimization & gradient estimation

o Optimize jointly A and ¢ (NN parameters)

K
o(A)\ _ g _
max B |S E log/O(XGI0) - A@llp| st T(e®)-d=0
A Gro(A) | =7 X~p® —

Acyclicity constraint
o Optimization: Augmented Lagrangian Method + RMSprop (as in Lachapelle et al. [2020])

o Discrete sampling: gradient w.r.t. A estimated via Gumbel-Softmax Straight-Through

estimator pang et al., 2017; Maddison et al., 2017].

Masks and/or the Gumbel-Softmax estimator were used before in causal discovery
e.g., Kalainathan et al. [2018]; Ng et al. [2019]; Bengio et al. [2019]; Ke et al. [2019]
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Result: structure learning via continuous optimization

1.0

0.8

o
o

o
'S

Entries of o (A)

o
[N]

0.0

Correct ed_g.;es
Wrong edges

0 10000 20000 30000 40000 50000

Number of gradient steps

60000 70000

Optimizing the objective gradually prunes anti-causal edges from the graph

Alexandre Drouin
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DCDI: interventions with unknown targets

o Until now we assumed that [* was known, i.e. we knew which variables were targeted.
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DCDI: interventions with unknown targets
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Until now we assumed that [* was known, i.e. we knew which variables were targeted.

o What if we don't? (e.g., as in Ke et al. [2019]) Learn it!

K
SG) = sgp;EX~p<k> log f)(X; G, T,¢) = AGllo — M| Tllg

Intervention matrix Additional sparsity
is learned regularizer

Learning;:
> Can do the same relaxation /i ~ Bernoulli(o(By;))-

> Optimize jointly for ¢, A and f.

@ Theory: We showed the same guarantee holds for this score!

Alexandre Drouin Differentiable Causal Discovery February 16, 2021 27 /31



DCDI: choice of density function f

Gaussian

Effect

Cause Cause

o Gaussian: corresponds to a non-linear + additive noise assumption on the functional
form of causal mechanisms

> ldentification guaranteed if it actually holds in the distribution [Peters et al., 2014]
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DCDI: choice of density function f

Gaussian

Effect

Cause Cause

o Gaussian: corresponds to a non-linear + additive noise assumption on the functional
form of causal mechanisms

> ldentification guaranteed if it actually holds in the distribution [Peters et al., 2014]

o Deep sigmoidal flow: a type of normalizing flow that was shown to be a universal
density approximator [Huang e al. 2018]
»> No assumption on functional forms

> Identification guaranteed by our Thm 1 (with enough interventions)
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Results — Structural Hamming Distance (lower is better)

DCDI-G = DCDI with Gaussian density ANM = nonlinear with additive noise
DCDI-DSF = DCDI with deep sigmoidal flow

NN = nonlinear (no additive noise)
e = average number of parents
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Conclusion & Future Work

We proposed DCDI, a causal discovery algorithm that:

o is theoretically grounded
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Conclusion & Future Work

We proposed DCDI, a causal discovery algorithm that:
o is theoretically grounded
@ supports perfect, imperfect and unknown-target interventions

o scales well with sample size (compared to methods using kernel-based independence tests)

o achieves state-of-the-art performance, especially on denser graphs

Future work:

@ More extensive evaluation: beyond synthetic data, violate assumptions (centzel et al., 2019]
@ Relax causal sufficiency: allow for hidden confounders (ghattacharya et al., 2020]
e Time series: non-stationnarities as imperfect interventions (pamfi et al. 2020]

o Learning variable representations: not being agnostic to the nature of variables
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Thank you!
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